Search results for " end-effects"

showing 5 items of 5 documents

Input-Output Feedback Linearizing Control of Linear Induction Motor Taking into Consideration the End-Effects. Part II: Simulation and Experimental R…

2015

This is the second part of a paper, divided in two parts, dealing with the application of the input–output feedback linearization (FL) control technique to linear induction motors (LIMs). The first part has treated the theoretical formulation of the input–output feedback linearization control technique as to be applied to linear induction motors. This second part describes the set of tests, both in numerical simulations and experiments, performed to assess the validity of the control technique. In particular, it addresses the issues of the sensitivity of the FL control versus the LIM electrical parameters’ variations and the improvements achievable by considering the LIM dynamic end effects…

Input/outputEngineeringEnd effectVector controlbusiness.industryApplied MathematicsControl (management)Control engineeringComputer Science ApplicationsLinear Induction Motor (LIM) feedback linearization end-effects.Set (abstract data type)Settore ING-INF/04 - AutomaticaControl and Systems EngineeringControl theoryLinear induction motorSensitivity (control systems)Feedback linearizationElectrical and Electronic Engineeringbusiness
researchProduct

Input-Output Feedback Linearization Control of Linear Induction Motors Including the dynamic End-Effects

2014

This paper proposes the theoretical framework and the consequent application of the input-output feedback linearization (FL) control technique to linear induction motors (LIM). LIM, additionally to RIM, presents other strong non-linearities caused by the dynamic end effects, leading to a space-vector dynamic model with time-varying inductance and resistance terms and a braking force term. This paper, starting from a recently developed dynamic model of the LIM taking into consideration its end effects, defines a FL technique suited for LIMs, since it inherently considers its dynamic end effects. The proposed approach has been validated experimentally on a suitably developed test set-up. Furt…

End effectEngineeringVector controlbusiness.industryControl (management)Control engineeringLinear Induction Motor (LIM) feedback linearization end-effects.Term (time)InductanceSettore ING-INF/04 - AutomaticaControl theoryLinear induction motorFeedback linearizationInput output feedback linearizationbusiness
researchProduct

Input-Output Feedback Linearization Control with On-line MRAS Based Inductor Resistance Estimation of Linear Induction Motors Including the Dynamic E…

2016

This paper proposes the theoretical framework and the consequent application of the input–output feedback linearization (FL) control technique to linear induction motors (LIMs). LIM, additionally to rotating induction motor, presents other strong nonlinearities caused by the dynamic end effects, leading to a space-vector dynamic model with time-varying inductance and resistance terms and a braking force term. This paper, starting from a recently developed dynamic model of the LIM taking into consideration its end effects, defines a FL technique suited for LIMs, since it inherently considers its dynamic end effects. Additionally, it proposes a technique for the on-line estimation of the indu…

0209 industrial biotechnologyEngineeringLinear induction motor feedback linearization end-effects MRAS estimator.02 engineering and technologyInductorEnd effectsIndustrial and Manufacturing Engineering020901 industrial engineering & automationSettore ING-INF/04 - AutomaticaControl theoryAdaptive system0202 electrical engineering electronic engineering information engineeringlinear induction motor (LIM)Feedback linearizationElectrical and Electronic Engineeringmodel reference adaptive system (MRAS) estimatorbusiness.industry020208 electrical & electronic engineeringControl engineeringInductanceControl and Systems EngineeringLinear induction motorfeedback linearization (FL)HyperstabilitybusinessMRASInduction motor
researchProduct

Input-Output Feedback Linearization Control of a Linear Induction Motor Taking Into Consideration Its Dynamic End-Effects and Iron Losses

2020

This article proposes a new input-output feedback linearization control (FLC) technique of linear induction motors (LIMs), taking into consideration both the dynamic end-effects and the iron losses. Starting from a previously conceived dynamic model, including the dynamic end-effects and the iron losses, all the theoretical framework of the FLC has been developed. The proposed FLC improves a previous version of FLC in accounting also the iron losses, which in LIMs with fixed-secondary sheet play a pivotal role more than in rotating induction motors (RIMs). The proposed FLC has been experimentally tested on a suitably developed test setup, and experimental comparisons between the proposed FL…

Dynamic end-effectsEnd effectComputer scienceinput-output feedback linearization control (FLC)05 social sciencesControl (management)020207 software engineering02 engineering and technologyiron lossesIndustrial and Manufacturing EngineeringLinear Induction Motor (LIM) Input-output Feedback Linearization Control (FLC) Dynamic end-effects Iron Losses Space-vector State ModelSettore ING-INF/04 - AutomaticaControl and Systems EngineeringControl theoryLinear induction motor0202 electrical engineering electronic engineering information engineeringlinear induction motor (LIM)0501 psychology and cognitive sciencesFeedback linearizationspace-vector state modelnonlinear controlElectrical and Electronic EngineeringInput output feedback linearization050107 human factors
researchProduct

Input-output feedback linearizing control of linear induction motor taking into consideration the end-effects. Part I: Theoretical analysis

2015

Abstract This first part of a paper, divided into two parts, deals with the theoretical formulation of the input–output feedback linearization (FL) control technique as to be applied to linear induction motors (LIMs). Linear induction motors, differently from rotating induction motors (RIMs), present other strong non-linearities caused by the so-called dynamic end effects, leading to a space-vector model with time-varying inductance and resistance terms and an additional braking force term. This paper, starting from a dynamic model of the LIM taking into consideration its dynamic end effects, previously developed by the same authors, defines a feedback linearization (FL) technique suited fo…

Input/outputEngineeringCorrectnessbusiness.industryApplied MathematicsControl engineeringEnd-effectsComputer Science ApplicationsTerm (time)Set (abstract data type)InductanceLinear Induction Motor (LIM) feedback linearization end-effectsSettore ING-INF/04 - AutomaticaControl and Systems EngineeringControl theoryLinear induction motorFeedback linearizationLinear induction motor (LIM)Feedback linearizationElectrical and Electronic EngineeringbusinessInduction motor
researchProduct